Holloways Beach Environmental Education Centre

Field Study- Boating

- 1. Site orientation and crab survey
- 2. Bird survey
- 3. Survey analysis including Simpson's Diversity Index
- 4. Water testing and site evaluation

HOLLOWAYS BEACH ENVIRONMENTAL EDUCATION CENTRE

Boating and Crab pot map

The numbers on the map indicate where HBEEC have been surveying crab data for over two decades.

Water Quality results are taken at sites 4, 7 and 12.

Historical data on crabs, birds and water quality is available from HBEEC to compare to your data.

Your Crab catch

M/F	Pot	Size	Tide
	no.	(mm)	

Thomatis/Richters Creek

History: Indigenous occupation of the Cairns area dates back at least 5,100 years from primary evidence and over 40,000 years according to secondary evidence. The lower coast area between Cairns and Port Douglas in which the Thomatis/Richters Creek is situated, are the traditional lands of the Yirrganydji people. Their country extends to the islands and reefs off Trinity Inlet including Green and Double islands. The Cairns area attracted European settlement in the late 1870s after gold was discovered further north. Both Thomatis and Richters creeks were named after European settlers in the area. Whilst initially separate creeks, over time they have changed course and merged. The merge point can be seen near crab pot 5 on the map above.

Current use: The system is used for recreational fishing, crabbing and boating and flow is affected by rainfall, groundwater and human use such as the dams from the Barron Gorge Hydroelectric Power Station. Adjacent land use ranges from suburban housing to farming, roadways, a dump (inland from pot number 11) and boat ramps. HBEEC use the lower system for educational boat tours and environmental research.

1. Bird Survey

Methodology

This study was completed with Holloways Beach Environmental Centre staff on Thomatis/Richters Creek. Birds were sighted from 4.3m boats travelling through the system and identified using HBEEC booklets.

• Data was taken in _____ (season) on ___/ ___ (date).

Tally start time _____ end time _____ duration ____ hours and _____minutes

• Tide_____ Moon phase_____ Recent rainfall: high/ medium/ low/ none

Species	Tally (n)	n(n-1)	Species	Tally (n)	N(n-1)						
Aust. White Ibis			Osprey								
Azure kingfisher			Pelican								
Beach Thick Knee			Rainbow Bee-eater								
Black Butcherbird			Sacred Kingfisher								
Black kite			Silver Gull								
Brahminy Kite			Torres Strait Pigeon								
Darter			Welcome Swallow								
Eastern Curlew			Whimbrel								
Forest Kingfisher			Whistling Kite								
Great Egret			White-bellied Sea Eagle								
Great-billed Heron			White-breasted Woodswallow								
Gull-billed Tern			White-faced Heron								
Indian Myna			Willy Wagtail								
Laughing Kookaburra											
Mangrove Heron											
Mangrove Kingfisher											
Masked Lapwing											
Orange-footed Scrub fowl											
TOTAL	N=	Σ n(n-1) =		1							
Which species was/were most prevalent?											

What type of birds (waders/ raptors/ small tree-dwelling/ other) were the most abundant? Why do you think this might be the case?

List 2 biotic and abiotic factors that may affect the species diversity										
Factor	Affect if high levels/numbers	Affect if low levels/numbers								
Biotic 1.										
Biotic 2.										
Abiotic 1.										
Abiotic 2.										

Evaluating biodiversity, species richness, and evenness, using Simpson's Diversity Index

Simpson's Diversity Index is a measure of diversity. In ecology, it is often used to quantify the biodiversity of a habitat. It takes into account the number of species present (richness), as well as the abundance of each species (evenness).

$$SDI = 1 - \left(\frac{\sum n(n-1)}{N(N-1)}\right)$$
 Where:

- n is the total number of individuals of a particular species
- N is the total number of organisms of all species
 - \sum n (n-1) is the sum of all species calculations of n(n-1)

SDI ranges between 0 and 1:

The closer the SDI is to 1, the more diverse the community. This means that there are many different species without overly dominant species.

The closer to zero, the less diverse; predominantly or entirely one species

Calculate SDI for your data:

$$SDI = 1 - \left(\frac{\sum n(n-1)}{N(N-1)}\right)$$

What is the Simpson's Diversity Index derived from the survey?_____

What does this suggest about the diversity of birds within the Richters/Thomatis Creek ecosystem?

Richness?

Evenness?

Diversity?

If you were to complete the same survey once a month throughout the year, do you think that the SDI would fluctuate significantly? Why/ why not?

Bird survey methodology.

Use the chart below to determine the type of survey conducted by HBEEC.

content/uploads/2015/04/Survey-Techniques-Guide.pdf

According to the chart, what type of survey does the HBEEC Centre survey methodology constitute?

How accurate do you think that the HBEEC methodology is? Excellent/good/fair/slightly inaccurate/unreliable

What are the advantages/disadvantages of using this methodology?

Advantages	Disadvantages				

Name 3 or more issues with the data reliability and offer a way to improve.

Data issue/Limitation	How it might affect data (potential error)	Suggestions for improvement (modification) (reduce error or improve validity of results)

4. Water Testing and Site Evaluation

Vessel:

Thomatis Creek Water Quality Testing

- Date:
- Weather Observations:
- Samples taken by:

Site	GPS Location	Time	Site Evaluation Score		Observations: Eg. Human impacts and	Temp (°C)	Flow rate	рН	D.	0.	Sal (ppt)	Turb (JTU)
			Vegetation Score	Erosion Score	dominant species				mg/l	% sat		
Site 1(pot 4) surface (20cm)	S16°50'03", E145°43'39"											
>1m												
Site 2(pot 7) surface (20cm)	S16°50'42", E145°43'23"											
>1m												
Site 3(pot 12) surface (20cm)	S16°51'29", E145°43'03"											
>1m												

Excellent	Good	Fair	Poor	Very Poor	
Bank vegetation					
(5)	(4)	(3)	(2)	(1)	
Mainly undisturbed	Mainly native vegetation	Medium cover, mixed	Introduced ground cover,	Introduced ground cover	
native vegetation	extending several meters	native/ introduced. Or	reduced native tree	with lots of bare ground,	
extending at least 5m	back from water's edge.	one side cleared, the	cover, predominantly	occasional tree. Also	
back from water's edge.	Little disturbance or no	other undisturbed or less	introduced vegetation.	includes sites with	
No signs of site alteration.	signs of recent site	than 2m of healthy		concrete-lined channels.	
	disturbance.	riparian area.			
Bank erosion and stab	oility				
(5)	(4)	(3)	(2)	(1)	
Stable; no erosion/	Only spot erosion	Localised erosion evident.	Significant active erosion	Extensive or almost	
sedimentation evident.	occurring. Little	A relatively good	evident especially during	continuous erosion. Over	
No undercutting of banks,	lo undercutting of banks, undercutting of bank,		high flows. Unstable,	50% of banks have some	
usually gentle bank good vegetation cover,		continuous damage to	extensive areas of bare	form of erosion; very	
slopes. Lower banks usually gentle bank		bank structure or	banks, little vegetation	unstable with little	
covered with root mat	slopes, no significant	vegetation.	cover.	vegetation cover.	
grasses, reeds or shrubs.	damage to bank				
	structure.				

A riparian zone/area is the interface between land and a river or stream. This is typically where mangroves grow. Their health is affected by numerous factors such as adjacent land use, wash from boats, invasive species, pollution and dieback due to factors such as poor water quality.

Mangroves protect our shores from erosion and tidal surge and protect our water by filtering out nutrients and other pollutants like our kidneys filter our blood. Mangroves also provide homes and food sources for innumerable terrestrial and aquatic species and are a key contributing factor in the health of coastal reef systems. Riparian Area A stream's natural zone

Streams Need Their Riparian Areas! maintain a buffer zone between the stream and development or agriculture

Water Testing- what, how and why

Test	Measurement units	nt What does it measure? How is it measured? Influencing factors (all probes are calibrated at HBEEC)		Influencing factors	Impact on ecosystem	Water Quality objective
Temperature	Degrees Celsius (°C)	The heat of a substance	Via probe at 20cm and 1+m depth	Flow, rainfall, salinity, surface cover, turbidity, atmospheric temperature, shade groundwater etc.	Organisms rely on specific temperature windows for survival. Too hot or too cold and organisms fail to thrive or die.	Seasonal variance ≈16-28° C
pH (potential of hydrogen/ power of hydrogen)	1-14 Lower=acidic 7 = neutral Upper = alkaline	The number of loose hydrogen (hydroxyl, H+) ions in a solution. More H+ = more acidic.	Via probe which detects H+ by using a buffer solution inside a glass membrane and measuring the potential between the internal buffer and the external solution.	Flow, rainfall, bank composition, pollution, fertiliser run off etc.	If water is too acidic or too alkaline it can severely inhibit growth, reproduction or survival of species.	6.4 (fresh water) to 8.4 (salt sinks) Seawater ≈ 8 Fresh≈ 6.5-7.5
Dissolved oxygen (DO)	mg/L or ppm or % saturation	The amount of oxygen accessible for aquatic organisms for essential life processes such as respiration (breathing).	DO probes measure the oxygen that diffuses across a membrane. This induces a chemical reaction and an electrical signal. The signal is read by the DO probe and is displayed on a meter.	Water temp, atmospheric availability (molecular oxygen), photosynthesis, flow etc.	Too little- mass die offs of single or multiple species. 0-2 mg/L: not enough oxygen to support life 2-4 mg/L: only a few fish and aquatic animals can survive 4-7 mg/L: good for many aquatic animals 7-11 mg/L: very good for aquatic life	>4ppm/ mg/L or 80-105% saturation
Salinity	Ppt/ppm	The amount of salt in a liquid.	The probe measures the conductivity of the water, salt dissolved in water increases conductivity. The more salt, the more conductive the water.	Tide, flow, distance from ocean etc.	Organisms rely on specific salinity windows for survival. Some organisms are tolerant of different levels, but generally, too much variation will see organisms fail to thrive or die.	0-35ppk (ocean≈35ppk)
Turbidity	NTU Nephelometric Turbidity Units (Jackson units)	The clarity/cloudiness of a liquid. A measurement of the amount of light that is scattered by material (suspended solids) in the water when a light is shined through the water sample.	 Via Secchi disc or turbidity tube reading on site. Via a water sample tested in the lab. 	Rainfall, soil types, stormwater runoff, pollution, tidal flow etc.	Suspended solids can quickly cause water quality deterioration through increasing temp, lowering DO and preventing light from reaching aquatic plants.	<10 NTU

Test	Measurement	What does it measure?	How is it measured?	Influencing factors	Impact on ecosystem	Water Quality
Dissolved Inorganic Nitrogen (DIN)	mg/L	DIN = ammonia + nitrate + nitrite which is derived from inorganic sources both natural and manmade e.g. fertilisers, chemicals.	Water sample taken and tested in a lab.	Rainfall, adjacent land use, stormwater runoff, pollution, tidal flow etc.	DIN, TN, DIP and TP are all forms of nutrients. Excess nutrient flow may result in algal outbreaks	<0.03 mg/L
Total Nitrogen (TN)	mg/L	Ammonia, nitrate and nitrates derived from both organic and non-organic substances. Dissolved and suspended.	Water sample taken and tested in a lab.	Soil types, rainfall, adjacent land use, stormwater runoff, pollution, tidal flow etc.	and subsequent outbreak of algal eaters such as Crown of Thorns sea stars. It may also result in the eutrophication of lakes and	<0.250 mg/L
Dissolved Inorganic Phosphorus (DIP) AKA orthophosphate or soluble reactive phosphorus	mg/L	Dissolved phosphorus derived from non-living sources or bacterial decomposition of organic matter. Inorganic phosphorus is the form required by plants.	Water sample taken and tested in a lab.	Rainfall, flow, adjacent land use, decomposing matter, salinity etc.	estuaries which can mean high water temperatures, acidification, low oxygen (hypoxia) and death of organisms. Even a modest increase in	<0.005 mg/L
Total Phosphorus (TP)	mg/L	All forms of phosphorus in the sample organic, inorganic, dissolved and suspended. Animals can use either organic or inorganic phosphate.	Water sample taken and tested in a lab.	Rainfall, flow, adjacent land use, decomposing matter, salinity etc.	phosphorus or nitrogen can set off a whole chain of undesirable events in a waterway.	<0.02 mg/L
Chlorophyll a (Chl a)	μg/L	Green pigment found in plants which absorbs sunlight and converts it to sugar during photosynthesis.	Water sample taken and tested in a lab.	Rainfall, flow, tides, nutrients, water and atmospheric temp, sunlight etc.	Concentrations are an indicator of algal abundance. Higher concentrations indicate poor water quality due to stagnant water, high temps or excess nutrients.	Less than 3μg/L
Intestinal Enterococci	CFU/100 mL colony forming units	Enterococci are bacteria that live in the intestinal tracts of warm-blooded animals, including humans.	Water sample taken and tested in a lab.	Animal effluent, sewerage leakage etc.	Indicate possible contamination of streams and rivers by fecal waste. May cause severe illness.	

Estuaries are biologically productive transition zones between land and sea that play a vital role in transforming, recycling, and sequestering nutrients and organic matter, thus influencing nutrient loading to coastal and marine systems.

Historical water quality data

9						1				DIN		TN	DIP	TP Ch	orophyll	Baterial ent-
	DATE	Time	Tide		Water Temp PH	•	D.O. Dissolved ox	Salinity (ppt)	Turbidity	Nitrogen (mg/L)	Ammonia (mg/L) T	otal Nitrogen (mg/L)	osphorous (mg/L)	rous (mg/L) ph	yil a (µg/L) e	erococci (CFU) Readings taken by
-	15/03/2	018 11:01	Outgoing	Surface 1m	25.6 7 25.5 7	7.04 7.05	5.4 5.16	9.42 9.96	17	0.05	0.05	0.39	0.01	0.04	2.6	88 Woree SHS Yr 11s Woree SHS Yr 11s
SITE	18/05/2	018 10:30	High	Surface 1m					5.6	0.14	0.05	0.32	0.01	0.02	4.1	Not tested Ravenshoe SHS Yr 11/12 Ravenshoe SHS Yr 11/12
	25/06/2	018 11:53	Outgoing	Surface 1m	18.3 5 17.8 6	5.84 6.15	6.7 6.63	10.5 10.42	8.9	0.05	0.02	0.32	0.01	0.02	1.8	21 Ravenshoe Yr 11s Ravenshoe Yr 11s
	DATE	Time	Tide		Water Temp PH	t	D.O. Dissolved ox	Salinity (ppt	Turbidity	Nitrogen (mg/L)	Ammonia (mg/L) T	otal Nitrogen (mg/L)	osphorous (mg/L)	rous (mg/L) ph	yll a (µg/L) e	erococci (CFU) Readings taken by
	15/03/2	018 11:10:00 AM	Outgoing	Surface 1m	12.2 6 24.8	6.25 6.2	5.38 5.35	9.12 9.76	21	0.06	0.03	0.4	0.01	0.03	<1	140 Woree SHS Yr 11s Woree SHS Yr 11s
ITE 2	18/05/2	018 11:00	High	Surface 1m	12.2 22.1				6	0.06	0.03	0.33	0.01	0.02	4.5	Not tested Ravenshoe SHS Yr 11/12 Ravenshoe SHS Yr 11/12
0,	25/06/2	018 12:07	Outgoing	Surface 1m	17.6 6 17.4	6.1	7.13 6.89	5.47 6.03	8.8	0.04	0.02	0.34	<0.01	0.02	1.3	25 Ravenshoe Yr 11s Ravenshoe Yr 11s
	DATE	Time	Tide		Water Temp PH	ł	D.O. Dissolved ox	Salinity (ppt)	Turbidity	Nitrogen (mg/L)	Ammonia (mg/L) T	otal Nitrogen (mg/L)	osphorous (mg/L)	rous (mg/L) ph	yil a (µg/L) e	erococci (CFU) Readings taken by
	15/03/2	018 11:56	Outgoing	Surface 1m	25.9 6 24.9 6	5.34 5.23	5.67 5.56	9.01 9.32	19	0.12	0.03	0.38	0.01	0.03	<1	170 Woree SHS Yr 11s Woree SHS Yr 11s
TE 3	18/05/2	018 <mark>11</mark> :20	High	Surface 1m	13.3 22.1				4.1	0.1	0.03	0.36	0.01	0.02	3.7	Not tested Ravenshoe SHS Yr 11/12 Ravenshoe SHS Yr 11/12
SI	25/06/2	018 12:30	Outgoing	Surface 1m	19.5 6 19.6 5	6.04 5.89	7.33 7.15	8.44 8.19	6	0.06	<0.02	0.32	<0.01	0.02	1.3	35 Ravenshoe Yr 11s Ravenshoe Yr 11s

Use the water testing information on the previous pages to answer questions about the historical data above.

1. Which site had the highest turbidity reading? ______ Which date did this occur? ______

2. How might the high turbidity have impacted the other readings on this date? Give examples.

3. Are salinity readings generally higher at the surface or at ≈1m depth? _____ Explain why this trend might occur.

4. On which date were chlorophyll levels highest?

a) What could have caused this?

b) How might these high levels have impacted upon the Mangrove ecosystem and the reef?

Article re the loss of seagrass at Waquoit Bay due to excess nutrients: <u>https://www.whoi.edu/press-room/news-</u> release/excess-nutrients-lead-to-dramatic-ecosystem-changes-in-cape-cods-waquoit-bay/

Article on COTS and how nutrient load affects numbers: <u>https://www.aims.gov.au/research-topics/marine-life/crown-thorns-starfish</u>